Publications

75. Polarisation charge switching through the motion of metal atoms trapped in fullerene cages.
Raggi, G., Stace, A. J. and Bichoutskaia, E.
Phys. Chem. Chem. Phys. 16, 23869-23873 (2014)
DOI: http://dx.doi.org/10.1039/C4CP02672A
74. A robust binary supramolecular organic framework (SOF) with high CO2 adsorption and selectivity.
Lü, J., Perez-Krap, C., Suyetin, M., Alsmail, N. H., Yan, Y., Yang, S., Lewis, W., Bichoutskaia, E., Tang, C. C., Blake, A. J., Cao, R. and Schröder, M.
Journal of the American Chemical Society 136, 12828-12831 (2014)
DOI: http://dx.doi.org/10.1021/ja506577g
73. Isotope substitution extends the lifetime of organic molecules in transmission electron microscopy.
Chamberlain, T. W., Biskupek, J., Skowron, S. T., Bayliss, P. A., Bichoutskaia, E., Kaiser, U. and Khlobystov, A. N.
Small, in press (2014).
DOI: http://dx.doi.org/10.1002/smll.201402081
72. A general geometric representation of sphere-sphere interactions.
Chan, H.-K., Lindgren, E. B., Stace, A. J. and Bichoutskaia, E.
"Progress in Theoretical Chemistry and Physics" book series; editor: Prof. Jean Maruani, in press (2014).
71. Methane adsorption in metal-organic frameworks containing nanographene linkers: a computational study.
Bichoutskaia, E., Suyetin, M., Bound, M., Yan, Y. and Schröder, M.
Journal of Physical Chemistry C 118, 15573-15580 (2014).
DOI: http://dx.doi.org/10.1021/jp503210h
70. A novel bismuth-based metal-organic framework for high volumetric methane and carbon dioxide adsorption.
Savage, M., Yang, S., Suyetin, M., Bichoutskaia, E., Blake, A. J., Barnett, S. A. and Schröder, M.
Chemistry - A European Journal 20, 8024-8029 (2014).
DOI: http://dx.doi.org/10.1002/chem.201304799
69. Open Access

Band gap expansion, shear inversion phase change behaviour and low-voltage induced crystal oscillation in low-dimensional tin selenide crystals.
Carter, R., Suyetin, M., Lister, S., Dyson, M. A., Trewhitt, H., Goel, S., Liu, Z., Suenaga, K., Giusca, C., Kashtiban, R. J., Hutchinson, J. L., Dore, J. C., Bell, G. R., Bichoutskaia, E. and Sloan. J.
Dalton Transactions 43, 7391-7399 (2014).
DOI: http://dx.doi.org/10.1039/C4DT00185K
68. Formation of nickel-carbon heterofullerenes under electron irradiation.
Sinitsa, A. S., Lebedeva, I. V., Knizhnik, A. A., Popov, A. M., Skowron, S. T. and Bichoutskaia, E.
Dalton Transactions 43, 7499-7513 (2014).
DOI: http://dx.doi.org/10.1039/C3DT53385A
67. Electrostatic force between a charged sphere and a planar surface: a general solution for dielectric materials.
Khachatourian, A., Chan, H.-K., Stace, A. J. and Bichoutskaia, E.
Journal of Chemical Physics 140, 074107 (2014).
DOI: http://dx.doi.org/10.1063/1.4862897
66. Analysis of high and selective uptake of CO2 in an oxamide-contaning {Cu2(OOCR)4} based metal organic framework.
Alsmail, N. H., Suyetin, M., Yan Y., Cabot, R., Perez-Krap, C., Lü, J., Easun, T. L., Bichoutskaia, E., Lewis W., Blake, A. J. and Schröder, M.
Chemistry - A European Journal 20, 7317-7324 (2014).
DOI: http://dx.doi.org/10.1002/chem.201304005
65. Open Access
Surface-charge distribution on a dielectric sphere due to an external point charge: examples of C60 and C240 fullerenes.
Raggi, G., Stace, A. J. and Bichoutskaia, E.
Phys. Chem. Chem. Phys. 15, 20115-20119 (2013).
DOI: http://dx.doi.org/10.1039/C3CP53522C
64. Electron-beam engineering of single-walled carbon nanotubes from bilayer graphene.
Algara-Siller, G., Santana, A., Onions, R., Suyetin, M., Biskupek, J., Bichoutskaia, E. and Kaiser, U.
Carbon 65, 80-86 (2013).
DOI: http://dx.doi.org/10.1016/j.carbon.2013.07.107
63. Open Access
Approaches to modelling irradiation-induced processes in transmission electron microscopy.
Skowron, S. T., Lebedeva, I., Popov, A. and Bichoutskaia, E.
Feature Article, Nanoscale 5, 6677-6692 (2013).
DOI: http://dx.doi.org/10.1039/C3NR02130K
62. Transition metal complexes of a salen-fullerene diad: redox and catalytically active nanostructures for delivery of metals in nanotubes.
Lebedeva, M. A., Chamberlain, T. W., Davies E. S., Mancel, D., Thomas, B. E., Suyetin, M., Bichoutskaia, E., Schröder, M. and Khlobystov, A. N.
Chemistry - A European Journal 19, 11999-12008 (2013).
DOI: http://dx.doi.org/10.1002/chem.201300872
61. Coulomb fission in dielectric dication clusters: experiment and theory on steps that may underpin the electrospray mechanism.
Chen, X., Bichoutskaia, E. and Stace, A. J.
Journal of Physical Chemistry A 117, 3877-3886 (2013).
DOI: http://dx.doi.org/10.1021/jp311950p
60. Open Access
Inclusion of radiation damage dynamics in high-resolution transmission electron microscopy image simulations: The example of graphene.
Santana, A., Zobelli, A., Kotakoski, J., Chuvilin, A. and Bichoutskaia, E.
Physical Review B 87, 094110 (2013).
DOI: http://dx.doi.org/10.1103/PhysRevB.87.094110
59. Modulating the packing of [Cu24(isophthalate)24] cuboctahedra in a triazole-containing metal-organic polyhedral framework.
Yan, Y., Suyetin, M., Bichoutskaia, E., Blake, A. J., Allan, D. R., Barnett, S. A. and Schröder, M.
Edge Article. Chemical Science 4, 1731-1736 (2013).
DOI: http://dx.doi.org/10.1039/C3SC21769H
58. Meso-scale modelling of shock wave propagation in a SiC/Al nanocomposite reinforced with WS2-inorganic fullerene nanoparticles.
Volkova, E. I., Jones, A., Brooks, R., Zhu, Y. and Bichoutskaia, E.
Composite Structures 96, 601-605 (2013).
DOI: http://dx.doi.org/10.1016/j.compstruct.2012.08.039
57. Stability and dynamics of vacancy in graphene flakes: edge effects.
Santana, A., Popov, A. and Bichoutskaia, E.
Chem. Phys. Lett. 557, 80-87 (2013).
DOI: http://dx.doi.org/10.1016/j.cplett.2012.11.077
56. Reply to the 'Comment on "Treating highly charged carbon and fullerene clusters as dielectric particles" ' by H. Zettergren and H. Cederquist, Phys. Chem. Chem. Phys. , 2012, 14, DOI: 10.1039/c2cp42883k.
Stace, A. J. and Bichoutskaia, E.
Phys. Chem. Chem. Phys. 14, 16771-16772 (2012).
DOI: http://dx.doi.org/10.1039/C2CP43407E
55. Open Access
Electronic excitation in bulk and nanocrystalline alkali halides.
Bichoutskaia, E. and Pyper, N. C.
J. Chem. Phys. 137, 184104 (2012).
DOI: http://dx.doi.org/10.1063/1.4764307
54. Open Access
Sequential multiscale modelling of SiC/Al nanocompositeis reinforced with WS2 nanoparticles under static loading.
Volkova, E. I., Jones, A., Brooks, R., Zhu, Y. and Bichoutskaia, E.
Physical Review B 86, 104111 (2012).
DOI: http://dx.doi.org/10.1103/PhysRevB.86.104111
53. Controlling the regioselectivity of the hydrosilylation reaction in carbon nanoreactors.
Solomonsz, W. A., Rance, G. A., Suyetin, M., La Torre, A., Bichoutskaia, E. and Khlobystov, A. N.
European Journal of Chemistry 18, 13180-13187 (2012).
DOI: http://dx.doi.org/10.1002/chem.201201542
52. Selective CO2 uptake and inverse CO2/C2H2 selectivity in a dynamic bi-functional metal-organic framework.
Yang, W., Davies, A. J., Lin, X., Suyetin, M., Matsuda, R., Blake, A. J., Wilson, C., Lewis, W., Parker, J. E., Tang, C. C., George, M. W., Hubberstey, P., Kitagawa, S., Sakamoto, H., Bichoutskaia, E., Champness, N. R., Yang, S. and Schröder, M.
Edge Article. Chemical Science 3, 2993-2999 (2012).
DOI: http://dx.doi.org/10.1039/C2SC20443F
51. A partially-interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide.
Yang, S., Lin, X., Lewis, W., Suyetin, M., Bichoutskaia, E., Parker, J. E., Tang, C. C., Allan, D. R., Rizkallah, P. J., Hubberstey, P., Champness, N. R., Thomas, M. K., Blake, A. J. and Schröder, M.
Nature Materials 11, 710-716 (2012).
DOI: http://dx.doi.org/10.1038/nmat3343
50. Aberration corrected imaging of a carbon nanotube encapsulated Lindqvist ion and correlation with density functional theory calculations.
Sloan, J., Bichoutskaia, E., Liu, Z., Kuganathan, N., Faulques, E., Suenaga, K. and Shannon, I.
Journal of Physics: Conference Series 371, 012018 (2012).
DOI: http://dx.doi.org/10.1088/1742-6596/371/1/012018
49. Open Access
Absolute electrostatic force between two charged particles in a low dielectric solvent.
Stace, A. J. and Bichoutskaia, E.
Soft Matter 8, 6210-6213 (2012).
DOI: http://dx.doi.org/10.1039/C2SM25602A
48. Size, structure and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
Chamberlain, T. W., Biskupek, J., Rance, G. A., Chuvilin, A., Alexander, T. J., Bichoutskaia, E., Kaiser, U. and Khlobystov, A. N.
ACS Nano 6(5), 3943-3953 (2012).
DOI: http://dx.doi.org/10.1021/nn300137j
47. Interactions and reactions of transition metal clusters with the interior of single-walled carbon nanotubes imaged at the atomic scale.
Zoberbier, T., Chamberlain, T. W., Biskupek, J., Kuganathan, N., Eyhusen, S., Bichoutskaia, E., Kaiser, U. and Khlobystov, A. N.
Journal of the American Chemical Society 134(6), 3073-3079 (2012).
DOI: http://dx.doi.org/10.1021/ja208746z
46. High-precision imaging of an encapsulated Lindqvist ion and correlation of its structure and symmetry with quantum chemical calculations.
Bichoutskaia, E., Liu, Z., Kuganathan, N., Faulques, E., Suenaga, K., Shannon, I. and Sloan, J.
Nanoscale 4, 1190-1199 (2012).
DOI: http://dx.doi.org/10.1039/C2NR11621A

This article is contribution to themed issue Modelling of the Nanoscale.
45. Computational Nanoscience.
RSC Theoretical and Computational Chemistry Series.
Bichoutskaia, E. (Editor)
RSC Publishing 2011, 429 pp.
DOI: http://dx.doi.org/10.1039/9781849732680
44. Vacancy migration in graphene flakes and ribbons.
Loftus, B., Bichoutskaia, E. and Marks, G.
241st National Meeting of the American Chemical Society
Abstracts of papers of the American Chemical Society
241, 810-CHED (2011).
43. Treating highly charged carbon and fullerene clusters as dielectric particles.
Stace, A. J. and Bichoutskaia, E.
Phys. Chem. Chem. Phys.13(41), 18339-18346 (2011).
DOI: http://dx.doi.org/10.1039/c1cp21573f
42. Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube.
Chuvilin, A., Bichoutskaia, E., Gimenez-Lopez, M. C., Chamberlain, T. W., Rance, G. A., Kuganathan, N., Biskupek, J., Kaiser, U. and Khlobystov, A. N.
Nature Materials 10, 687-692 (2011).
DOI: http://dx.doi.org/10.1038/nmat3082
41. Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale.
Chamberlain, T. W., Meyer, J. C., Biskupek, J., Leschner, J., Santana, A., Besley, N. A., Bichoutskaia, E., Kaiser, U. and Khlobystov, A. N.
Nature Chemistry 3, 732-737 (2011).
DOI: http://dx.doi.org/10.1038/nchem.1115
40. Why like-charged particles of dielectric materials can be attracted to one another.
Stace, A. J., Boatwright, A. L., Khachatourian, A. and Bichoutskaia, E.
Journal of Colloid and Interface Science 354, 417-420 (2011).
DOI: http://dx.doi.org/10.1016/j.jcis.2010.11.030
39. Nanoresonator based on relative vibrations of the walls of carbon nanotubes.
Bichoutskaia, E., Popov, A. M., Lozovik, Y. E., Ershova, O. V., Lebedeva, I. V. and Knizhnik, A. A.
Fullerenes Nanotubes and Carbon Nanostructures 18(4), 523-530 (2010).
DOI: http://dx.doi.org/10.1080/1536383X.2010.488524
38. Open Access
Electrostatic analysis of the interactions between charged particles of dielectric materials.
Bichoutskaia, E., Boatwright, A. L., Khachatourian A. and Stace, A. J.
Journal of Chemical Physics 133(2), 024105 (10 pages) (2010).
DOI: http://dx.doi.org/10.1063/1.3457157
37. Open Access
Study of polycyclic aromatic hydrocarbons adsorbed on graphene using density functional theory with empirical dispersion corrections.
Ershova, O. V., Lillestolen, T. C. and Bichoutskaia, E.
Physical Chemistry Chemical Physics 12(24), 6483-6491 (2010).
DOI: http://dx.doi.org/10.1039/c000370k

This paper was published as part of a PCCP themed issue on Characterisation of Adsorbed Species. Guest Editors: Petr Nachtigall and Carlos Otero Arean.

36. Direct transformation of graphene to fullerene.
Chuvilin, A., Kaiser, U., Bichoutskaia, E., Besley, N. A. and Khlobystov, A. N.
Nature Chemistry 2(6), 450-453 (2010).
DOI: http://dx.doi.org/10.1038/nchem.644
35. High frequency electromechanical memory cell based on telescoping carbon nanotubes.
If download this paper please notice page numbers are 4322-4328 not 1-7.
Popov, A. M., Lozovik, Y. E., Kulish, A. S. and Bichoutskaia, E.
Journal of Nanoscience and Nanotechnology 10(7), 4322-4328 (2010).
DOI: http://dx.doi.org/10.1166/jnn.2010.2502
34. Modeling of an ultrahigh-frequency resonator based on the relative vibrations of carbon nanotubes.
Bichoutskaia, E., Popov, A. M., Lozovik, Y. E., Ershova, O.V., Lebedeva, I. V. and Knizhnik, A. A.
Physical Review B 80(16), 165427 (2009).
DOI: http://dx.doi.org/10.1103/PhysRevB.80.165427

This paper was selected for the November 9, 2009 issue of Virtual Journal of Nanoscale Science and Technology (AIP, APS) (http://www.vjnano.org volume 20, issue 19)

33. Ab initio calculations of the walls shear strength of carbon nanotubes.
Bichoutskaia, E., Ershova, O.V., Lozovik, Y. E. and Popov, A.M.
Technical Physics Letters (Russian journal) 35(7), 666-669 (2009).

Original Russian text can be found here

32. An electromechanical nanothermometer based on thermal vibrations of carbon nanotube walls.
Popov, A.M., Lozovik, Y.E., Bichoutskaia, E., Ivanchenko, G.S., Lebedev, N.G. and Krivorotov, E.K.
Physics of the Solid State (Russian journal) 51(6), 1306-1314 (2009).

Original Russian text can be found here

31. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes.
Bichoutskaia, E. and Pyper, N.C.
Journal of Chemical Physics 129(15), 154701 (2008).
DOI: http://dx.doi.org/DOI:10.1063/1.2987703

This paper was selected for the October 27, 2008 issue of Virtual Journal of Nanoscale Science and Technology (AIP, APS) (http://www.vjnano.org volume 18, issue 17)

30. Electromechanical nanothermometer based on carbon nanotubes.
Popov, A.M., Lozovik, Y.E., Bichoutskaia, E., Ivanchenko, G.S., Lebedev, N.G. and Krivorotov, E.K.
Fullerenes Nanotubes and Carbon Nanostructures 16(5-6), 352–356 (2008).
DOI: http://dx.doi.org/10.1080/15363830802225317
29. Nanorelay based on multi-walled nanotubes.
Kulish, A.S., Popov, A.M., Lozovik, Y.E. and Bichoutskaia, E.
Fullerenes Nanotubes and Carbon Nanostructures 16(5-6), 340–343 (2008).
DOI: http://dx.doi.org/10.1080/15363830802219914
28. Nanotube-based data storage devices.
Bichoutskaia, E., Popov, A.M. and Lozovik, Y.E.
Materials Today 11(6), 38–43 (2008).
DOI: http://dx.doi.org/10.1016/S1369-7021(08)70120-2
27. A theoretical study of the cohesion of noble gases on graphite.
Bichoutskaia, E. and Pyper, N.C.
Journal of Chemical Physics 128(2), 024709 (2008).
DOI: http://dx.doi.org/10.1063/1.2819242

This paper was selected for the January 28, 2008 issue of Virtual Journal of Nanoscale Science and Technology (AIP, APS) (http://www.vjnano.org volume 17, issue 4)

26. Modelling interwall interactions in carbon nanotubes: fundamentals and device applications.
Bichoutskaia, E.
Invited Article for Triennial Issue 'Chemistry & Engineering'
Philosophical Transactions - Royal Society of London Series A: Mathematical Physical and Engineering Sciences 365(1861), 2893–2906 (2007).
DOI: http://dx.doi.org/10.1098/rsta.2007.0017
25. Electromechanical nanothermometer.
Bichoutskaia, E., Popov, A.M., Lozovik, Y.E., Ivanchenko, G.S. and Lebedev, N.G.
Physics Letters A 366(4-5), 480–486 (2007).
DOI: http://dx.doi.org/10.1016/j.physleta.2007.01.077

This paper was selected for a media coverage by NanotecWeb, a website from the Institute of Physics in the UK that provides nanotechnology news and resources.

24. Polarizability of the iodide ion in crystal.
Bichoutskaia, E. and Pyper, N.C.
Journal of Physical Chemistry C 111(26), 9548–9561 (2007).
DOI: http://dx.doi.org/10.1021/jp068257s
23. Nanoelectromechanical systems based on multi-walled nanotubes: nanothermometer, nanorelay, and nanoactuator.
Popov, A.M., Bichoutskaia, E., Lozovik, Y.E. and Kulish, A.S.
Physica Status Solidi A: Applications and Materials Science 204(6), 1911–1917 (2007).
DOI: http://dx.doi.org/10.1002/pssa.200675322
22. Multi-walled nanotubes: commensurate-incommensurate phase transition and NEMS applications.
Bichoutskaia, E., Heggie, M.I., Lozovik, Y.E. and Popov, A.M.
Fullerenes Nanotubes and Carbon Nanostructures 14(2-3), 131–140 (2006).
DOI: http://dx.doi.org/10.1080/15363830600663412
21. Diffusion of walls in double-walled carbon nanotubes.
Bichoutskaia, E., Heggie, M.I., Lozovik, Y.E. and Popov, A.M.
Fullerenes Nanotubes and Carbon Nanostructures 14(2-3), 215–220 (2006).
DOI: http://dx.doi.org/10.1080/15363830600728074
20. Interwall interaction and elastic properties of carbon nanotubes.
Bichoutskaia, E., Heggie, M.I., Popov, A.M. and Lozovik, Y.E.
Physical Review B 73(4), 045435 (2006).
DOI: http://dx.doi.org/10.1103/PhysRevB.73.045435

This paper was selected for the February 13, 2006 issue of Virtual Journal of Nanoscale Science and Technology (http://www.vjnano.org volume 13, issue 6).

19. Structure and energetics of LiF chains as a model for low dimensional alkali halide nanocrystals.
Bichoutskaia, E. and Pyper, N.C.
Chemical Physics Letters 423(1-3), 234–239 (2006).
DOI: http://dx.doi.org/10.1016/j.cplett.2006.03.043
18. Fundamental global model for the structures and energetics of nanocrystalline ionic solids.
Bichoutskaia, E. and Pyper, N.C.
The Journal of Physical Chemistry B 110(12), 5936–5949 (2006).
DOI: http://dx.doi.org/10.1021/jp055800g
17. Nanothermometer, nanorelay and nanomotor based on the interaction of the walls of carbon nanotubes (in Russian).
Popov, A.M., Bichoutskaia, E., Kulish, A.S. and Lozovik, Y.E.
Carbon Nanoparticles in Condensed Matter, Minsk, 34–41 (2006).
16. Ab initio study of relative motion of walls in carbon nanotubes.
Bichoutskaia, E., Popov, A.M., El-Barbary, A., Heggie, M.I. and Lozovik, Y.E.
Physical Review B 71(11), 113403 (2005).
DOI: http://dx.doi.org/10.1103/PhysRevB.71.113403

This paper was selected for the March 28, 2005 issue of Virtual Journal of Nanoscale Science and Technology (http://www.vjnano.org volume 11, issue 12).

15. Intermolecular potential energy extrapolation method for weakly bound systems: Ar2, Ar-H2 and Ar-HF dimers.
Bichoutskaia, E., Tulegenov, A.S. and Wheatley, R.J.
Molecular Physics 102(6), 567–577 (2004).
DOI: http://dx.doi.org/10.1080/00268970410001683852
14. Extrapolation methods and scaled perturbation theory for determining intermolecular potential energy surfaces.
Hodges, M.P., Bichoutskaia, E., Tulegenov, A.S. and Wheatley, R.J.
International Journal of Quantum Chemistry 96(6), 537–546 (2004).
DOI: http://dx.doi.org/10.1002/qua.10747
13. Ab initio spectroscopy of Van der Waals molecules: a comparison of three different theoretical methods applied to NeHF and NeDF.
Newton, D.P., Bichoutskaia, E. and Wheatley, R.J.
Chemical Physics Letters 393(1-3), 70–75 (2004).
DOI: http://dx.doi.org/10.1016/j.cplett.2004.06.018
12. Intermolecular potentials from supermolecule and monomer calculations.
Wheatley, R.J., Tulegenov, A.S. and Bichoutskaia, E.
International Reviews in Physical Chemistry 23(1), 151–185 (2004).
DOI: http://dx.doi.org/10.1080/014423504200207772
11. Perturbative, acausal effects in ultracold non-crossing atomic collisions.
Bichoutskaia, E. and Crothers, D.S.F.
Journal of Physics B: Atomic Molecular and Opitical Physics 36(1), 11–18 (2003).
DOI: http://dx.doi.org/10.1088/0953-4075/36/1/302
10. On the semiclassical approach to cold atomic collisions.
Bichoutskaia, E., Crothers, D.S.F. and Sokolovski, D.
Proceedings of the Royal Society of London A 458(2022), 1399–1410 (2002).
DOI: http://dx.doi.org/10.1098/rspa.2001.0919
9. Extrapolation of intermolecular interaction energies in weakly bound Van der Waals complexes.
Bichoutskaia, E., Hodges, M.P. and Wheatley, R.J.
Journal of Computational Methods in Sciences and Engineering 2(3-4), 391–397 (2002).
8. Semiclassical analytical approach to the description of quasimolecular optical transitions.
Devdariani, A., Bichoutskaia, E., Tchesnokov, E., Bichoutskaia, T., Crothers, D.S.F., Leboucher-Dalimier, E., Sauvan, P. and Angelo, P.
Journal of Physics B: Atomic Molecular and Optical Physics 35(11), 2469–2476 (2002).
DOI: http://dx.doi.org/10.1088/0953-4075/35/11/306
7. Spectroscopy of quasimolecular optical transitions: Ca(4s2 1S0 - 4s4p 1P, 4s3d 1D2)-He. The influence of radiation width.
Bichoutskaia, E., Devdariani, A., Ohmori, K., Misaki, O., Ueda, K. and Sato, Y.
Journal of Physics B: Atomic Molecular and Optical Physics 34(12), 2301–2312 (2001).
DOI: http://dx.doi.org/10.1088/0953-4075/34/12/301
6. Quasi-molecular emission and nonadiabatic transitions: II. Ca(4s4p 1P, 4s3d 1D)-He(1s2, 1S0) quasi-molecule.
Bichutskaya, E.N., Devdariani, A.Z. and Zagrebin, A.L.
Optics and Spectroscopy C/C of Optika I Spektroskopiia 88(2), 163–168 (2000).
5. Quasi-molecular emission and nonadiabatic transitions. I. Ca(4s4p 3P1, 3P2) and Mg(3s3p 3P1, 3P2)-He(1s2 1S0) quasi-molecules.
Bichutskaya, E.N., Devdariani, A.Z., Zagrebin, A.L. and Sebyakin, Y.N.
Optics and Spectroscopy C/C of Optika I Spektroskopiia 87(2), 197–202 (1999).
4. A satellite of a spectral line as a consequence of nonadiabatic interaction of atoms: Demkov's model.
Bichutskaya, E.N., Devdariani, A.Z. and Sebyakin, Y.N.
Optics and Spectroscopy C/C of Optika I Spektroskopiia 85(1), 7–13 (1998).
3. Application of asymptotic methods for describing a diffusive-recombinative mode of discharge.
Golubovskii, Y.B., Kuranov, A.L., Suleimenov, I.E. and Bichutskaya, E.N.
Plasma Physics Reports C/C of Fizika Plazmy, 21(5), 424 (1995).
2. The effect of a local magnetic field on the spatial-phase characteristics of striations.
Bichutskaya, E.N., Golubovskii, Y.B., Nekuchaev, V.O. and Ponomarev, N.S.
Technical Physics C/C of Zhurnal Tekhnicheskoi Fiziki 38(3), 241 (1993).
1. Gas-discharge lighting system for colour-dynamic devices: patent for invention.
Bichutskaya, E.N., Golubovskii, Y.B. and Suleimenov, I.E.
N1802886 (USSR), 01 Jan., (1991).